Force > Work Done
Question No. 1
Find the work done by the force field →F({x,y,z})= on a particle as it moves along the helix \vec r\left( t \right) = cost\hat i + sint\hat j + t\hat k from point (1,0,0) to point \(\left( - 1,0,3\pi \right).
Solution:
Here
\vec F\left( x,y,z \right) = - \frac{1}{2}x\hat i - \frac{1}{2}y\hat j + \frac{1}{4}\hat k - - - - - - \left( A \right)
And
\vec r\left( t \right) = cost\hat i + sint\hat j + t\hat k
We know that
\vec r\left( t \right) = x\hat i + y\hat j + z\hat k
So,
x=cost , y = sint , z = t
By taking derivative w.r.t t of \vec r\left( t \right)
\vec{dr} \left( t \right) = \left( - sint\hat i + cos\hat j + \hat k \right)dt - - - - - \left( 1 \right)
By taking dot product of (A) and (1)
\vec F .d\vec r\left( t \right) = ( - \frac{1}{2}cost\hat i - \frac{1}{2}sint\hat j + \frac{1}{4}\hat k ) . ( - sint\hat I + cost\hat j + \hat k)dt
\vec F . d\vec r\left( t \right) = \left( \frac{1}{2}cost . sint - \frac{1}{2}sint . cost + \frac{1}{4} \right)dt
\vec F . d\vec r\left( t \right) = \frac{1}{4}dt
W = \smallint \vec F .d\vec r\left( t \right)
Total work done = W = \frac{1}{4}[\int_{1}^{-1}dt + \int_{0}^{3pi}dt]
= \frac{1}{4}\left[ \left( 1 + 1 \right) + \left( 0 - 3\pi \right) \right]
= \frac{1}{4}\left[ 2 - 3\pi \right]